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ABSTRACT

Current approaches to authoring behavior and dialogue for agents
that interact with humans in virtual environments are labor
intensive, yet often yield less robust results than desired in the
face of the incredible variance possible in human input. The
growing number of people playing multiplayer games online
provides a potentially better alternative to hand-authored content
capturing behavior and dialogue from human-human
interactions, and automating agents with this data. This paper
documents promising results from the first iteration of a
Collective Artificial Intelligence system that generates behavior
and dialogue in real-time from data captured from over 11,000
players of The Restaurant Game. We first describe the game, the
collective memory system, and the proposal-critique driven agent
architecture, and then demonstrate quantitatively that our system
preserves the fexture, or meaningful local coherence, of human
social interaction.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search - plan execution, formation, and
generation.

General Terms

Algorithms, Measurement, Design, Experimentation.
Keywords

Social Behavior, Natural Language, Dialogue, Learning,

Computer Games.

1. INTRODUCTION

Current approaches to authoring behavior and dialogue for agents
that interact with humans in virtual environments are labor
intensive, yet often yield less robust results than desired in the
face of the incredible variance possible in human input. Few
games or training simulations allow open-ended natural language
dialogue input. The growing number of people playing
multiplayer games online provides a potentially better alternative
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Figure 1. Screenshot from The Restaurant Game

to hand-authored content — capturing behavior and dialogue from
human-human interactions, and automating agents with this data.
This Collective Artificial Intelligence approach empowers agents
with shared memories spanning the wide range of language and
behavior found in human interactions. Collective Intelligence
refers to the phenomenon where a large number of ordinary
people collectively make better decisions than a small number of
experts. Similarly, Collective Artificial Intelligence refers to
capturing data from a large number of ordinary players in order to
produce behavior and dialogue more robust than can be authored
by a small number of skilled designers or engineers.

In previous work [10], we have described collecting data from
thousands of people online with a multiplayer game, and using
this data to learn statistical models of language and behavior in an
everyday scenario with an unsupervised system. These models of
social norms have been demonstrated to have the ability to
estimate the likelihood of observed interactions with accuracy that
correlates well with human judgment. This paper describes taking
the next step — automating characters with learned behavior and
dialogue.

Our study documents promising results from the first iteration of a
system that generates behavior and dialogue in real-time from
collective memories captured from over 11,000 people playing
The Restaurant Game. We first describe the game, the collective
memory system, and the proposal-critique driven agent
architecture, and then demonstrate quantitatively that our system
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preserves the fexture, or meaningful local coherence, of human
social interaction, while future work remains to capture the
higher-level structure.

Each gameplay session produces a raw log file that can be
summarized into a more human-readable form. We provide some
sample summarized output from an actual interaction between a
human customer and an agent waitress in Figure 2, which we will
refer back to as we describe parts of the system.

WAITRESS: "table for one?"

CUSTOMER: "yes, just me tonight"

WAITRESS: "Follow me, please"

CUSTOMER SITSON chair3(Chair)

WAITRESS: "Sit here. Would you like to see a menu?"
CUSTOMER: "yes please"

WAITRESS: "ok, one second then"

WAITRESS PICKSUP dyn008 (Menu) FROM podium (Podium)
WAITRESS GIVES dyn008 (Menu) TO CUSTOMER
CUSTOMER: "thanks"

WAITRESS: "there you go"

CUSTOMER: "can I start with a beer?"

WAITRESS: "certainly, coming right up"

WAITRESS: "can i have a beer please"

dyn028 (Beer) APPEARS ON bar (Bar)

WAITRESS PICKSUP dyn028 (Beer) FROM bar (Bar)
WAITRESS PUTSDOWN dyn028 (Beer) ON tablel (Table)
CUSTOMER: "thanks"

Figure 2. A human customer and an agent waitress interact.

2. THE RESTAURANT GAME

We designed The Restaurant Game as a platform for collecting
rich physical and linguistic interaction among humans. Players of
The Restaurant Game are anonymously paired online to play the
roles of a customer and waitress in a 3D virtual restaurant. Players
can move around the environment, type open-ended chat text, and
manipulate objects with a point-and-click interface. Every object
provides the same interaction options: pick up, put down, give,
inspect, sit on, eat, and touch. Objects respond to these actions in
different ways. Food diminishes bite by bite when eaten, while
eating a chair makes a crunch sound, but does not change the
shape of the chair. Picking up drinks from the bar allows a player
to give the drink to the other player, or put the drink down on a
surface. Trying to pick up the bar itself results in playing an audio
clip expressing physical exertion.

To date, we have collected log files from 8,430 completed games,
played by 11,187 different people. A game takes about 10-15
minutes to play, and is considered complete if two players joined,
and at least one player filled out a survey indicating an intentional
end to the interaction. An average game consists of 84 physical
actions, and 40 utterances with an average length of four words
each. Prior to completion, player interactions vary greatly, ranging
from games where players dramatize what one would expect to
witness in a restaurant, to games where players fill the restaurant
with cherry pies. While many players do misbehave, our previous
work [10] has demonstrated that when immersed in a familiar
environment, enough people do engage in behavior that allows an
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automatic system to learn valid statistical models of typical
behavior and language.

3. AGENT ARCHITECTURE OVERVIEW

We first describe the agent’s behavior at a high level, and provide
more detail in following sections. The agent is driven to keep the
interaction progressing. As the agent observes player actions and
utterances, it executes plans in response, where plans consist of
sequences of physical actions and/or dialogue utterances. Rather
than formulating plans at run-time, agents retrieve predefined
plans from collective memory, generated from gameplay logs of
previously recorded human-human games. Plans direct the
behavior of the agent, and provide expectations about the
behavior of the other player. When observations do not match
expectations, the agent re-evaluates available plans, and selects
the plan that minimizes deviation from the norm. Typicality of
behavior is assessed by exploiting preprocessed recurrence
patterns acquired by analyzing the human gameplay data. This
system enables the agent to pivot from one gameplay log to
another, providing contextually appropriate responses as the
situation unfolds.

Figure 3 depicts the flow of information through the agent
architecture. The agent observes utterances, physical actions, and
state changes to the game world through external sensors.
Observations from sensory input are stored in an interaction
history on a blackboard, shared between the sensory, action
selection, and actuation systems. Internal, reflective sensors
inspect the blackboard to detect broken expectations in the
currently active plan, and may broadcast the need to select a new
plan. The action selection system conducts a process of proposal
and critique to select a plan. Proposed plans are retrieved from
collective memory. A proposal consists of an action or dialogue
sequence extracted from a human gameplay log, and an offset
index from which to start executing the plan’s actions. The index
may point to a physical action or utterance, to be executed by the
agent or the other player. If the action is to be executed by the
other player, it is treated as an expectation that agent waits to
observe. Critics scrutinize proposed plans by comparing them to
recurrence patterns of human behavior and dialogue learned by
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Figure 3. Proposal-critique driven agent architecture.
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reflecting on gameplay logs in collective memory. Plans may be
rejected for a number of reasons — the next action in the proposed
plan is unlikely or physically impossible, or the previous actions
in the proposed plan do not match the recent history from the
current game. Finally, the actuator executes the next action in the
current plan by sending a command to the agent’s representation
in the game world. A command might instruct an agent to sit on a
chair, pick up a steak from the counter, or utter “What are your
specials tonight?”

Separating the critique process from the plan retrieval system
allows critics to exploit information that collective memory may
not be privy to, such as the interaction history, and the agent’s
believed state of the world. It is conceivable that collective
memory could exist on its own server, shared by many agents over
the internet. Collective memory might continually incorporate
new human gameplay data, and heterogenecous agents could
choose to generate different abstractions from this data.

4. RELATED WORK

Von Ahn and Dabbish [15] demonstrated using an online game as
a data collection device with the ESP game. This game collects
one-shot text labels for images by anonymously pairing thousands
of players who score points by typing the same word. The
Restaurant Game yields time-coded logs of 10-15 minutes of
interaction, from which we need to mine recurrence patterns from
dialogue and action sequences. The incentive to play The
Restaurant Game is social interaction, and contributing data for a
new collaboratively authored game, rather than scoring points.
Gorniak, Fleischman, and Roy [5, 7] have collected data from a
smaller number of subjects with a role playing game, and hand-
annotated human interactions to generate hierarchical models of
intention. This paper explores unsupervised generation of
behavior and dialogue from thousands of human examples.

Gorin, Riccardi, and Wright [6] have shown that it is possible to
learn utterance recurrence patterns given a corpus comparable in
size to ours. Their system analyzed spoken dialogue captured
from 10,000 customer support calls, and automatically acquired
salient phrases found to have high mutual information with 14
call-types. These phrases were used to classify calls for a routing
system where humans respond to the open-ended prompt “How
may I help you?” While language acquisition from The
Restaurant Game is simplified by directly capturing typed text
rather than speech, recognizing salient phrases is complicated by
the fact that unique dialogues occur at hundreds of different
branch points in the interaction, and consist of several turns taken
by two distinct roles.

Ravichandran and Hovy [13] automatically trained a question
answering system by employing a suffix tree [8] to find recurring
phrases in thousands of web pages containing the question and
answer. Our approach to learning recurring phrases in dialogue
iterates over substrings in chat text from 5,000 games, and inserts
each string into a suffix tree. We prune the tree and build a
dictionary of recurring phrases, used to abstract all lines of
dialogue into signatures consisting of sets of dictionary indices.

Our modular agent architecture resembles other agent
architectures designed for synthetic characters and planning
systems in commercial games [3, 11]. However, rather than
generating plans at run-time, our system selects and critiques
previously existing plans, abstracted from gameplay logs captured
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from human-human interactions. Singh and Minsky [14] have
proposed an architecture where critics detect when an agent’s
current approach fails to solve a problem, and suggest alternative
ways to think about it. Our critics proactively scrutinize available
plans to find one that conforms to social norms and the believed
state of the world. Barto, Sutton, and Anderson [1] have also
proposed the Actor-Critic method in the domain of reinforcement
learning.

An obvious approach to authoring agent behavior would be to
adopt an established formalism such as BDI or HTN [2, 9]. While
these formalisms provide high-level structure, many questions
remain regarding how to build models of behavior that are robust
in the face of unpredictable open-ended human interaction and
dialogue. In contrast, this paper explores learning the surface-
level behavior directly from human-human interactions.
Ultimately, a robust agent requires models of both the high-level
structure and surface-level behavior.

5. COLLECTIVE MEMORY

The collective memory system stores the library of human
gameplay logs, and engages in reflective processes to generate
abstractions representing recurrence patterns among logs. These
abstractions are generated automatically, and are useful in
critiquing proposed plans, and in assessing the likelihood of a
currently active plan. The collective memory system also stores
the predefined plans themselves, in the form of either action
traces or dialogue instances, defined in sections 5.1 and 5.2. In
practice, mining recurrence patterns is performed as a
preprocessing step before the agent begins interaction, but the
potential exists to mine patterns continuously over the course of
the agent’s life. Recurrence patterns are stored for both physical
action sequences, and dialogue utterances, as detailed below.

5.1 Action Lexicon, Traces, and Trigrams

The action lexicon is generated by compiling a list of every
unique action observed in 5,000 games. Actions are stored in a
STRIPS-like representation [4] with parameters, preconditions,
and effects, described in detail in previous work [10]. Each
unique action is role-dependent and context-sensitive; for instance
a waitress picking up pie from the counter is different from a
customer picking up pie from the counter, or a waitress picking up
pie from a table while sitting on a chair. We have observed 11,206
unique actions out of over 100,000 possible actions.

An action trace is a condensed representation of a gameplay log,
consisting of a time-coded sequence of action lexicon indices.
Between any pair of action indices, there may optionally be a
reference to a dialogue instance that contains utterances observed
between these actions. These action traces serve as one form of
predefined plans that the agent may select from at runtime through
the proposal-critique process described in section 7.

The trigram database stores action sequences of length three that
have been observed in more than 1% of the action traces. We
store a separate list of trigrams for each social role, with 312
trigrams for the customer and 443 for the waitress. Members of
the trigrams are indices into the action lexicon. For example, a
trigram might be <38, 59, 61> representing a customer putting a
menu down on a table, eating food, then drinking a beverage.
Along with each trigram, we store the associated observation
likelihood.
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5.2 Dialogue Instances, Libraries, Signatures
A dialogue instance is defined as a sequence of one or more
utterances occurring between two physical actions. For example,
in Figure 2 the three utterance exchange that occurs between the
customer sitting down and the waitress picking up a menu
composes one dialogue instance. Dialogue instances serve as the
second type of predefined plan that the agent may select from at
runtime through the proposal-critique process.

The physical action that precedes a dialogue gives it context.
Dialogue instances are clustered by context prior to mining
recurrent surface text patterns, to maximize utterance overlap. For
instance, we cluster all dialogues observed immediately after a
customer sits down. We find recurring phrases by following a
procedure similar to that described by Ravichandran and Hovy
[13], iterating over each three to five word substring within each
utterance, and inserting each substring into a suffix tree [8]. Our
suffix tree is simplified by restricting each branch and leaf node to
reference only one word. Utterances are enclosed in #START#
and #END# markers, so even a one word utterance becomes long
enough to insert into the tree. We build a separate tree for each
social role. [Each node in the tree keeps track of observed
frequency. Leaf nodes observed five times or less are pruned.

After pruning, each tree is flattened into a phrase library,
consisting of an indexed list of salient phrases. The libraries are
generated by adding each root-to-leaf sequence as one phrase,
plus each root-to-branch sequence for branch nodes whose
frequency exceeds the sum of its children’s frequencies by five. In
other words, if “Hello” has two children, and we observe “Hello”
at least five times more often than the sum of “Hello there” and
“Hello sir,” we preserve “Hello” as its own phrase. As we add
phrases to the library, we cluster them if they share the same
number of words, and only differ by one non-marker word. For
example, we might cluster “Welcome to the restaurant” with
“Welcome to our restaurant,” and assign indices 76.1 and 76.2
respectively. Note that this criterion does allow incorrect
clustering, such as “Would you like a beer?” and “Would you like
a table?” Preserving the sub-indices enables the utterance retrieval
system to find the best match when discrepancies exist.

We generate one dialogue library for each physical action that
precedes a dialogue in one or more games. The library contains all
dialogue instances observed following the action. Each line of
dialogue is tagged with an abstract signature composed of the
unordered set of phrase library indices for phrases found within
the utterance. Phrases referenced in the signature may overlap.
The signature for “Hi, how are you today?” will include indices
for both hi_how are you, and how are you today.

6. SENSORY SYSTEM

The agent has external sensors to detect player actions and
utterances, and internal reflective sensors which recognize when
plan re-selection is necessary. External sensors receive data from
the game world about utterances, actions, and resulting state
changes. Observations about these external events are stored on
the blackboard in an interaction history, recording all that has
transpired since the beginning of the gameplay session.

Internal sensors reflect on recent history updates, and broadcast
the need to select a new plan when expectations are broken. We
have implemented the following internal sensors.
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e  SensorBrokenExpectation — the observed physical action
does not match the next action in the current plan.

e  SensorExpiredExpectation — too much time has passed
while the agent was waiting for some action to occur.

e  SensorFailedActionExecution — the agent’s action resulted
in unexpected state changes, or no change at all.

e  SensorInterruption — a physical action was observed when
an utterance was expected, or vice-versa.

e  SensorUnlikelyNextAction — the action that the agents plans
to execute next completes a trigram that does not exist in the
collective memory trigram database, and is therefore
considered highly unlikely.

7. PLAN PROPOSAL AND CRITIQUE

If the sensors determine that recent observations are aligned with
the agent’s expectations, and the next action in the plan conforms
to typical behavior, the agent can simply continue following the
current plan (where a plan is represented as an action trace or
dialogue instance, as described in section 5). However, if
expectations have been broken, execution has failed, or the
current plan is going to lead the agent to misbehave, the agent
needs to select a better plan to continue the interaction. Plan
selection occurs through a proposal-critique process, where the
agent’s highest priority interaction goal leads to the retrieval of
one or more candidate plan proposals that are validated by a
number of critics based on different elimination criteria. One plan
is arbitrarily selected to activate from the pool of proposals
approved by all critics.

7.1 Interaction Goals

The agent has a set of prioritized interaction goals motivated by
the constant drive to keep the interaction progressing. These goals
are responsible for retrieving candidate plans from collective
memory, which are submitted to critics for approval. A candidate
plan consists of an action trace or dialogue instance, along with an
associated starting offset within the trace or dialogue. Following
is a list of interaction goals, sorted from highest to lowest priority.

e GoalRespondToUtterance — Respond to an utterance
directed at the agent by speaking or taking a physical action.

o GoalWaitForInteraction — Wait to see what transpires next
after the human player speaks to someone other than the
agent (e.g. the chef or bartender).

e  GoalForceDialogueConclusion — Execute a physical action
to force a dialogue to conclusion, when no response can be
found.

e GoallnitiatePhysicalAction — Initiate physical interaction
after the agent has concluded dialogue with an utterance.

e GoallnitiateDialogue — Initiate dialogue with another
player.

e  GoalRespondToPhysicalAction — Execute a physical action
in response to the last observed physical action.

e GoalBeginlnteraction — When all else fails, start over by
initiating dialogue contextually appropriate, given the last
observed physical action.

Once the highest priority, currently relevant goal is selected, the

agent retrieves candidate plans to satisfy the goal, relying on

critics to scrutinize the validity of the plans. If the critics do not
approve any of the candidates, the selected goal cannot be
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satisfied, and the proposal process repeats for the next highest
priority relevant goal.

The goals that lead the agent to initiate physical or dialogue
interaction (GoallnitiatePhysicalAction and GoallnitiateDialogue)
are unique, in that these goals each only propose a single
candidate plan. These interaction initiation goals become relevant
when the currently active plan instructs the agent to initiate a
dialogue or physical interaction. For example, in Figure 2 after the
waitress says "ok, one second then," GoallnitiatePhysicalAction
leads her to execute the action that occurred immediately after this
dialogue instance in the original human game — picking up a menu
from the podium. Similarly, if the agent was executing a plan of
physical actions, and encountered a reference to a dialogue
instance, GoallnitiateDialogue will lead the agent to utter the first
line of dialogue in the specified dialogue instance (or wait for the
other player to speak, in the case of an expectation).

In all other cases, the agent retrieves a list of candidate action
traces or dialogue instances to deliberate between. We retrieve
dialogue instances and action traces in different ways.

7.1.1 Dialogue Instance Candidate Retrieval

In Figure 2, the human customer says "can I start with a beer?"
soon after receiving a menu from the agent. The agent observes
this utterance and assigns it a signature representing the recurring
phrases found within. The signature consists of phrase indices
associated with the dialogue library that corresponds to the last
observed physical action — giving the customer a menu. The
library assigns the signature <65.1, 34.1>, which translates to
<start with_a, with_a beer #END#>. The agent finds candidate
responses by searching for the dialogue instances in the same
library that contain utterances whose signatures tie for the best
match with the input. Candidates are scored based on how many
indices match between a pair of signatures, with one point added
for each matching cluster index, and an additional point for each
matching cluster sub-index.

In our example, the library does not contain any dialogue
instances with a perfect match for the words “can I start with a
beer?”, but several dialogue instances exist that begin with “may 1
start with.” Table 1 lists the signatures and respective scores that
lead the agent to select dialogue instances containing “may I start
with a beer?” as the best candidates. These words do not match
exactly, but the signature is a perfect match.

Table 1. Signatures and scores for utterances.

Utterance Signature Score
“may I start with a beer” <65.1, 34.1> 4
“may I start with a salad” <65.1, 34.3> 3
“may I start with some soup” <65.1, 38.1> 2

After selecting the best matching dialogue instances, these
candidates are further pruned to the group that best matches the
dialogue history since the last physical action. Candidates are
scored by counting the number of utterances prior to the reference
utterance (the utterance that matches the input) whose signatures
include phrase clusters found in the current dialogue history. Sub-
indices are ignored during history scoring.
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7.1.2 Action Trace Retrieval

Retrieving action trace candidates is a simpler process, described
through an example. In Figure 2, the agent picks up a beer from
the bar, puts it on his table, and expects the customer to initiate a
dialogue, which he does by saying “thanks.” If the customer broke
the agent’s expectations by saying nothing, and instead picked up
the beer and took a sip, the agent would need to search for plans
that align with observations, following a two step process. First,
the agent loads the dialogue library that corresponds to the action
that preceded the last observed dialogue — giving the customer a
menu. Next, the agent searches for all dialogue instances in this
library that conclude with the action observed after the last
dialogue — a beverage appearing in the bar. All of the action traces
that refer to these dialogue instances are retrieved as candidates.
Critics are responsible for filtering out the action traces whose
histories since the last dialogue do not match recent observations.

7.2 Critics

The agent employs critics, responsible for rejecting proposals that
will lead to behavior that is unconventional or impossible. The
proposal-critique system iterates over each proposal, and gives
each critic the opportunity to reject it. Below are the rejection
criteria for the critics we have implemented.

e  CriticUnlikelyNextAction — The next physical action in a
plan is unlikely given the previous two physical actions in
the interaction history for the same role.

e  CriticUnmetPrecondition -- The next physical action in a
plan is impossible given the agent’s belief about the current
state of the world. For example, the customer cannot drink a
beverage if no beverage exists.

e  CriticHistoryMisMatch — The physical actions observed
since the last dialogue do not match the physical actions that
precede the next action in the proposed plan.

e  CriticRequiredRole — The player who will act or speak next
does not match a requirement set by the goal (and
communicated via the blackboard). For example, after action
execution fails, or an expectation expires, the agent should
immediately try to say or do something else to move the
interaction forward. In these cases, we should not approve
plans that set up expectations for the human to act or speak.

8. EXECUTION IN THE GAME WORLD

Thus far we have been describing the high-level reasoning that
takes place in the mind of the agent. In this section, we describe
how the agent actually carries out plans in the virtual
environment. The agent executes physical actions and utterances
by sending commands to its embodied, animated, physical
instantiation in the 3D world. Commands are specified at a high-
level, such as:

action(waitress, pickup, food, table);

The in-game character is responsible for resolving object
instances and navigating as necessary. While this does require
some hand coding of character behavior, navigation in virtual
worlds is a well studied problem, and it is simple to encode
heuristics to select contextual objects near the interaction partner.
The aspects of interaction that are more difficult to encode by
hand are the dynamics of social interaction and dialogue, which
our high-level reasoning system guides, by leveraging collective
memory.



AAMAS 2009 - 8™ International Conference on Autonomous Agents and Multiagent Systems « 70—15May, 2009 - Budapest, Hungary

This separation between high-level social reasoning and low-level
instantiation is beneficial for a number of reasons. Separating the
high-level reasoning from the low-level implementation details
allows the learned model of social interaction to transfer to virtual
worlds beyond the game where these behaviors were learned.
Models of behavior and dialogue learned in The Restaurant Game
might control avatars in Second Life. Perhaps these models could
even guide the behavior of physical robots in the real world. In
addition, by abstracting away the details at the high-level, we
avoid over-fitting the behavior to a particular restaurant
configuration.

9. EVALUATION

We performed a quantitative evaluation of our system by
generating data from 100 gameplay sessions, where both roles
(customer and waitress) were played by autonomous agents, and
compared the output to gameplay sessions between two human
players. While our system is designed to interact with humans, our
evaluation was intended to measure performance when interacting
with a compliant partner over the course of many games. Online
players cannot be guaranteed to play compliantly, and a small
deviation in agent behavior could throw an otherwise compliant
player off course completely. Pitting two agents against each other
levels the playing field, and allows us to focus on compliant
behavior for this first iteration of the system.

There was no centralized control over agent interactions.
Communication between agents occurs through the exact same
channels as between a human and an agent, and agents were not
permitted to draw data from the same recorded human gameplay
session. We ensured that the two agents were not syncing up to
follow the same recorded human game by broadcasting a
reservation message each time an agent accessed data in collective
memory, where the message identified the gameplay log file
where the data originated. Agents were not allowed to access data
associated with a game reserved by the other agent.

We evaluated gameplay occurring in the first 20 physical actions
of gameplay, where an unlimited number of dialogue utterances
may occur between any pair of physical actions. On average, each
evaluation game contains 24 utterances with a mean length of
three words, and a maximum length of 14 words. Each game
draws from an average of 24 different recorded human games,
with a median of 28 games. In total, the 100 evaluation games
drew data from 2,409 different recorded human games.

9.1 Evaluation Metric

We employed the BLEU score [12] from the field of machine
translation as our evaluation metric. A parallel can be drawn
between evaluating translation, and evaluating two agents
dramatizing a restaurant scenario. In the task of machine
translation, the machine is asked to translate a sentence from one
natural language to another (e.g. from French to English). When
physical actions are represented as action lexicon indices, we can
represent a gameplay session as one long sentence composed of a
mixture of action indices and words, all produced from the same
input — vague instructions to play the roles of customers and
waitresses. In a sense, the agents are translating their
interpretation of the restaurant scenario. Translation can be
evaluated by comparing the machine’s candidate translation
against some number of reference translations provided by
humans for the same input. There are many correct ways to

translate a sentence, and the machine’s translation may be some
combination of those provided by humans. In our case, every
game plays out differently, but we expect significant portions of
games to consist of behavior and dialogue that we have observed
previously in human games.

The BLEU score is a modified measure of precision between a
candidate translation and a corpus of reference sentences. The
simple unigram precision of a candidate sentence is the ratio
between the number of words in a sentence that can be found in at
least one reference sentence, to the total number of words in a
sentence. Note that precision can be measured for larger n-grams
by iterating over the words of the sentence and treating the next n
words as one unit. In Table 2, the simple unigram precision of the
candidate sentence is 7/7 = 1.0. The BLEU score modifies the
precision by limiting the total count of a word by the maximum
number of times that word appears in any single reference. In our
example, the word “the” appears at most twice in any reference,
so the modified precision is 2/7.

Table 2. Poor machine translation with high precision.

Candidate the the the the the the the
Reference 1 the cat is on the mat
Reference 2 there | is a cat on the mat

We evaluated our agent interactions by using the BLEU score to
compute the modified trigram precision of an agent-agent game,
as compared to a corpus of human-human reference games. From
our original pool of 8,430 completed games, we randomly
selected 5,000 training games and 3,000 test games, with no
overlap between training and test games. The training games
formed the basis of the agents’ collective memories, while the test
games provided references for computing the BLEU score. Driven
by the training corpus, we generated 100 agent-agent games for
evaluation.

9.2 Experimental Results

Figure 4 illustrates a comparison between the histograms of sorted
BLEU scores computed for 100 agent, human, and randomly
generated games, all compared with the same corpus of 3,000
reference human games. The mean BLEU scores of human and
agent behavior are very close, 0.55 and 0.6 respectively, with the
agent’s mean slightly higher. Variance of human scores is greater,

Evaluation Results

- _Random Baseline ——Agents — - Humans

09
N /
o ‘___’_,__,——;’-"_7

© 06

g =

k] —_— -

205 — =

2 / —_— ——t

E — e

@ 04 /’— ...... =
03 —

- =
021y e
014
o
0

14 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 %4 97 100|
Gameplay Session

Figure 4. Comparing BLEU score histograms for 100 games.
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CUSTOMER: "hi"

WAITRESS: "hello sir"

CUSTOMER: "can 1 get a table ?"

WAITRESS: "sure, take a seat."

CUSTOMER: "thanks"

CUSTOMER SITSON chair6 (Chair)

WAITRESS: "i recommend the a chef's tasting menu"
CUSTOMER: "yes please"

WAITRESS: "Great I'll be right with you."
WAITRESS PICKSUP dyn029 (Menu) FROM podium(Podium)
CUSTOMER STANDSUP FROM chair6 (Chair)

WAITRESS GIVES dyn029 (Menu) TO CUSTOMER

CUSTOMER SITSON chair6 (Chair)

CUSTOMER LOOKSAT dyn029 (Menu)

CUSTOMER: "can i1 get a cobb salad and a glass
CUSTOMER PUTSDOWN dyn029 (Menu) ON table3(Table)
WAITRESS: "lobster please"

dyn078 (Lobster) APPEARS ON counter3 (Counter)
WAITRESS: "water please"

dyn086 (Water) APPEARS ON bar (Bar)

WAITRESS PICKSUP dyn078 (Lobster) FROM counter3 (Cou
WAITRESS PUTSDOWN dyn078 (Lobster) ON table3 (Table)
WAITRESS PICKSUP dyn086 (Water) FROM bar (Bar)
CUSTOMER EATS dyn078 (Lobster)

WAITRESS PUTSDOWN dyn086 (Water) ON table3(Table)
CUSTOMER EATS dyn078 (Lobster_ Bitel)

CUSTOMER EATS dyn078 (Lobster_Bite2)

CUSTOMER EATS dyn086 (Water)

WAITRESS:
WAITRESS
WAITRESS
CUSTOMER:
WAITRESS:
CUSTOMER:
WAITRESS TOUCHES cash register (Register)

dyn216 (Bill) APPEARS ON podium(Podium)

WAITRESS PICKSUP dyn2l16(Bill) FROM podium (Podium)
WAITRESS GIVES dyn2l16(Bill) TO CUSTOMER

WAITRESS LOOKSAT dyn216 (Bill)

WAITRESS: "please pay"

CUSTOMER:
WAITRESS:
CUSTOMER:
WAITRESS: "water please"

dyn253 (Water) APPEARS ON bar (Bar)

"will your guest be joining you soon?"
PICKSUP dyn078 (Plate)
PUTSDOWN dyn078 (Plate) ON counter4 (Counte
"i'm not sure.i'll go ahead and order...
"I1l get your bill"

"would u like to drink with me"

"nicee!"
"ok

"one for me and one for you"

WAITRESS: "beer"

dyn260 (Beer) APPEARS ON bar (Bar)

WAITRESS: "water"

CUSTOMER: "did you know they dont have whiskey

dyn268 (Water) APPEARS ON bar (Bar)

Figure 5. Agent interaction with highest BLEU score.
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as humans are given greater freedom of expression than the critics
allow the agents. Standard deviation of human BLEU scores is
0.15, compared to 0.1 for agent scores. Human games score both
higher and lower than any agent games.

Both human and agents consistently score significantly better than
the random baseline. Random baseline games are constructed by
stitching together fragments of randomly selected games, until
each game contains at least 20 physical actions, and an unlimited
number of utterances between actions. We a repeated process of
randomly selecting one of the 5,000 training games, picking a
random starting offset into the game, and copying the next three
interactions. Each interaction could be a physical action index, or
a complete utterance.

9.3 Discussion and Future Work

It appears as if our agents are behaving as well or better than
human players, but the BLEU score does not give the complete
picture. Figure 5 details the interaction in the agent game with the
highest BLEU score, 0.85. In this gameplay session, we can see
what the BLEU score captures, and what it cannot recognize.
Simultaneously, we see the strengths and weaknesses of the
implemented system, which parallels those of the BLEU score.

On the surface, the agents are saying and doing what we would
expect from players of these roles. This is significant given the
enormous variety of language and interaction possible in this
simulation, as illustrated by the poor performance of our random
baseline. Focusing on any fragment of the interaction, we see
apparently coherent dialogue and physical behavior. When we
look at the big picture, however, a human observer can recognize
a number of issues -- customers normally order an entrée only
once, the waitress brings a menu after the customer agreed to the
tasting menu and later brings lobster after the customer orders
salad, the waitress brings the bill after the customer request to
order food (again), and the waitress enters a loop of ordering
many drinks after giving the customer the bill.

The BLEU score validates that our system has preserved the
texture of human social interaction, in terms of meaningful low-
level local coherence, while the metric’s limited three symbol
perspective is incapable of detecting issues in the higher-level
intentional structure of the gameplay session. Our current
implementation has no notion of goals, aside from continuing the
interaction, and has no representation of variables to bind to
language. In other words, the BLEU score gives a fair evaluation
of our current implementation, because it is as unaware as our
system is that “salad” and “lobster” refer to different objects, and
can be used in directives to satisfy a customer’s desire.

WAITRESS: "how are you"

CUSTOMER: "Pretty good, thank you"
WAITRESS: "fine"

CUSTOMER: "how about yourself"
WAITRESS: "i am from brazil"

Figure 6. Example of non-sequitur in agent dialogue.

In other gameplay sessions we find dialogue sequences where
transitions between utterance pairs are reasonable, but as a whole
yields a non-sequitur. The last utterance pair in Figure 6 does not
make sense when the previous history is considered. While the
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dialogue retrieval system does its best to match previous history,
it has no understanding of the semantics of the interaction.
Utterances are currently abstracted into collections of low-level
surface text patterns, void of any representation of intent or
content.

We have identified a number of issues with the current
implementation that point the way forward for future work.
Agents need a representation of the intentional structure of the
scenario, describing the partially ordered sequence of events in
terms of high-level goals, which can be accomplished by dividing
goals into sub-goals, primitive actions, and utterances. Our
utterance representation needs to be augmented with the intent
and content of the words in order for utterances to be useful in
planning to satisfy goals, and we need some means of associating
words with concepts. In other words, agents need to understand
that “Can I get a cobb salad” is intended as a directive referring to
salad, where salad describes the dish of leafy greens that agents
interact with in the world. If our collective memory system was
augmented with additional representations of structure and
semantics, we could leverage these abstractions in the existing
agent architecture by implementing new critics responsible for
higher-level cohesion. These representations may be generated
through a combination of automated and semi-automated
approaches. Semi-automated processes include a human in the
loop to annotate some portion of the data, which can then train
systems to annotate the rest.

10. CONCLUSION

There are numerous opportunities for virtual or robotic agents that
can assist, entertain, or educated us in our homes and workplaces.
All of these agents require humans to author their physical and
communicative behaviors, and today this requires specialized
skills. In this paper, we have demonstrated that it is possible to
automatically extract the texture of human interaction given a
corpus of thousands of human gameplay logs. Despite the
apparent freedom given to players of The Restaurant Game, we
find that humans tend to naturally restrict their language and
behavior when presented with a familiar environment, providing
valuable data that can be mined to direct agents. The first iteration
of our agent automatically learns to imitate the texture of human
dialogue and interaction in a restaurant. This work provides a
promising first step towards realizing Collective Al driven agents
that can interact and converse with humans without requiring
programming or specialists to hand-craft behavior and dialogue.
While we acknowledge that we cannot build robust agents based
purely on models of surface-level behavior, this texture of
interaction is an important piece that is difficult to capture with
hand-crafted models of behavior. Future work remains to provide
agents with representations of intentional structure and semantics
of language. As a step in this direction we are currently
developing a speech act classifier that will allow us to model
dialogue at goal-driven, intentional level.
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